Math 245C Lecture 15 Notes
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May 3, 2019

1 Approximation of L” Functions by Convolutions with Scaled
Mollifiers

Today’s lecture was given by a guest lecturer.

1.1 Approximation of L? functions by convolutions with scaled mollifiers

Theorem 1.1. Suppose |¢p(x)| < C(1 + |z|)™"¢ for some C,e > 0 (so ¢ € L'(R?)), and
let [pa d(x)dx =a. If f € LP with 1 < p < oo, then fx¢y(x) = af(x) ast — 0T for every
x in the Lebesgue set of f.

Remark 1.1. This implies that f * ¢;(x) — af(x) for a.e. x and for every z for which f
is continuous

Proof. If x is in the Lebesgue set of f, for any § > 0, there exists an n > 0 such that
[ e - s@ldy <o <y

In other words, lim, _,o+ ﬁ [, |f(z —y) = f(z)|dy = 0. We have

[f * ¢e(x) —af(x)] =

[, fa=9ants) ~ 1)) dy

= [ owlise =9 - fa)ldy

— [ 1elife—0) - f@ldy+ [ 6l - 1@l dy.
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We claim that I, < A6 for some A independent of ¢ and that Iy — 0 as t — 0F. If the
claim holds, then

li — < lim I; < Ad
S\ o) —af(@l < g b <
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Letting § — 0,
Jim o dn(a) = af ().

To estimate I1, let K € Z be such that 25 < n/t < 2K+ if n/t > 1 and K = 0 if
n/t < 1. We view the ball By as the union of Byi-x, \ By, for k =1,2,3,..., K and the
ball By-k,. We have a few cases:

1. On B217k7] \ 327k77 fOl" k= 17 e ,K,
|be(y)| =t y)| < CEP (L4 [y < O ¢ 27 ) T

2. On B27Kn’
gu(y)| =t [p(t " y)| < CE™

So
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Use the inequality defining K:
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To estimate Iy, we have, using Holder’s inequality,
In < /B (If (=) + [f@)]) (6] () < N F LBy billp + 1f ()13 el
n

We split into cases:
1. p’ = oco: Then

||:[]‘B$]¢t||p’ <Ct "1+ t_ln)_”_e = Ct(t+n)""° < Ctiy"°.

2. 1<p <o

11Be bty
= [ oo dy
n
=) [ oy
B
< o) / [+ 1)) dz
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et (3)
< Ot
which goes to 0 as t — 0. O

Suppose we want to show that Cg° is dense in LP. Then we let f,, = flp,,so fn, — f
in LP. The idea is then that f, * ¢y — f —n ast — 07, so f, * ¢ € C° approximates f
in LP.
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